(ITA – 2014) (2ª fase) Em uma experiência de interferência de Young, uma luz magenta, constituída por uma mistura de luz vermelha (de comprimento de onda de 660 nm) e luz azul (comprimento de onda de 440 nm) de mesma intensidade da luz vermelha, incide perpendicularmente num plano onde atravessa duas fendas paralelas separadas de 22,0 μm e alcança um anteparo paralelo ao plano, a 5,00 m de distância. Neste, há um semieixo Oy perpendicular à direção das fendas, cuja origem também está a 5,00 m do ponto médio entre estas.
Obtenha o primeiro valor de y > 0 onde há um máximo de luz magenta (intensidades máximas de vermelho e azul no mesmo local). Se necessário, utilize para .
Gabarito:
Resolução:
Para que ocorra interferência construtiva devemos ter a seguinte relação:
Para ocorrer a interferência construtiva a seguinte relação deve ser respeitada:
sendo n um número par
dessa maneira vamos analisar para cada frequência de luz:
Vermelha:
Azul:
O primeiro ponto em que temos interferência construtiva das duas frequências coincidentes vale: =0,3m
(ITA - 2014 - 1ª FASE) Das afirmações:
I. Se x, y ∈ , com y ≠ – x, então x + y ∈ ;
II. Se x ∈ e y ∈ , então xy ∈ ;
III. Sejam a, b, c ∈ , com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,
é (são) verdadeira(s):
Ver questão
Considere as funções f, g : → , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:
I. Se A = B, então a = b e m = n;
II. Se A = , então a = 1;
III. Se a, b, m, n ∈ , com a = b e m = – n, então A = B,
é (são) verdadeira(s)
Ver questão