(ITA - 2018 - 1 FASE)
São dadas duas caixas, uma delas contém três bolas brancas e duas pretas e a outra contém duas bolas brancas e uma preta. Retira-se, ao acaso, uma bola de cada caixa. Se P1 é a probabilidade de que pelo menos uma bola seja preta e P2 a probabilidade de as duas bolas serem da mesma cor, então P1 + P2 vale
Gabarito:
A probabilidade de se retirar uma bola branca na primeira caixa e uma bola branca na segunda caixa é:
Logo,
A probabilidade de se retirar uma bola preta na primeira caixa e uma bola preta na segunda caixa é:
Logo,
Portanto,
(ITA - 2014 - 1ª FASE) Das afirmações:
I. Se x, y ∈ , com y ≠ – x, então x + y ∈ ;
II. Se x ∈ e y ∈ , então xy ∈ ;
III. Sejam a, b, c ∈ , com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,
é (são) verdadeira(s):
Ver questão
Considere as funções f, g : → , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:
I. Se A = B, então a = b e m = n;
II. Se A = , então a = 1;
III. Se a, b, m, n ∈ , com a = b e m = – n, então A = B,
é (são) verdadeira(s)
Ver questão