(ITA - 2018 - 1 FASE) Um tubo fino de massa 1.225 g e raio r = 10,0 cm encontra-se inicialmente em repouso sobre um plano horizontal sem atrito. A partir do ponto mais alto, um corpo de massa 71,0 g com velocidade inicial zero desliza sem atrito pelo interior do tubo no sentido anti-horário, conforme a figura. Então, quando na posição mais baixa, o corpo terá uma velocidade relativa ao tubo, em cm/s, igual a
–11,3.
–206.
11,3.
206.
194.
Gabarito:
206.
1)Aplicando a conservação da quantidade de movimento no sentido horizontal:
2)Aplicando a conservação da energia mecânica, temos:
Aplicando (B) em (A):
Assim:
e
A partir de V1 e V2, podemos chegar na velocidade relativa(Vrel).
Chegando assim, à alternativa D.
(ITA - 2014 - 1ª FASE) Das afirmações:
I. Se x, y ∈ , com y ≠ – x, então x + y ∈ ;
II. Se x ∈ e y ∈ , então xy ∈ ;
III. Sejam a, b, c ∈ , com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,
é (são) verdadeira(s):
Ver questão
Considere as funções f, g : → , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:
I. Se A = B, então a = b e m = n;
II. Se A = , então a = 1;
III. Se a, b, m, n ∈ , com a = b e m = – n, então A = B,
é (são) verdadeira(s)
Ver questão