[IME- 2014/2015 - 2ª fase]
Num triângulo ABC isósceles, com ângulos iguais em B e C, o seu incentro I se encontra no ponto médio do segmento de reta que une o seu ortocentro H a seu baricentro G. O segmento de reta AG é menor que o segmento de reta AH. Os comprimentos dos segmentos de reta HI e IG são iguais a d. Determine o perímetro e a área desse triângulo em função de d.
Gabarito:
Resolução:
Substituindo BK = 3 GL, temos:
A figura se torna:
Assim,
Portanto, o perímetro é:
e a área é:
(IME 2007)
O gráfico acima apresenta a velocidade de um objeto em função do tempo. A aceleração média do objeto no intervalo de tempo de 0 a 4t é:
Ver questão(IME 2007) Um cubo de material homogêneo, de lado L = 0,4 m e massa M = 40 kg, está preso à extremidade superior de uma mola, cuja outra extremidade está fixada no fundo de um recipiente vazio. O peso do cubo provoca na mola uma deformação de 20 cm. Coloca-se água no recipiente até que o cubo fique com a metade de seu volume submerso. Se a massa específica da água é , a deformação da mola passa a ser:
Ver questão(IME 2007) Uma nave em órbita circular em torno da Terra usa seus motores para assumir uma nova órbita circular a uma distância menor da superfície do planeta. Considerando desprezível a variação da massa do foguete, na nova órbita:
Ver questão(IME 2007) Um gás ideal sofre uma expansão isotérmica, seguida de uma compressão adiabática. A variação total da energia interna do gás poderá ser nula se, dentre as opções abaixo, a transformação seguinte for uma:
Ver questão