Questão 55002

Determine o conjunto solução para a equação a seguir:

6sen^2x-9senx+3=0.

A

left{xinmathbb{R}|x=frac{pi}{2}+2kpi,,ou,,x=frac{pi}{6}+2kpi,,ou,,x=frac{5pi}{6}+2kpi,,kinmathbb{Z}
ight}

B

left{xinmathbb{R}|x=frac{pi}{4}+2kpi,,ou,,x=frac{pi}{3}+2kpi,,ou,,x=frac{5pi}{6}+2kpi,,kinmathbb{Z}
ight}

C

left{xinmathbb{R}|x=2kpi,,ou,,x=frac{pi}{4}+2kpi,,kinmathbb{Z}
ight}

D

left{xinmathbb{R}|x=frac{pi}{4},,ou,,x=frac{pi}{3}
ight}

E

left{xinmathbb{R}|x=frac{pi}{6},,ou,,x=frac{pi}{2},,ou,,x=frac{pi}{4}
ight}

Gabarito:

left{xinmathbb{R}|x=frac{pi}{2}+2kpi,,ou,,x=frac{pi}{6}+2kpi,,ou,,x=frac{5pi}{6}+2kpi,,kinmathbb{Z}
ight}



Resolução:

Tem-se que

6sen^2x-9senx+3=0Leftrightarrow senx=frac{-left(-9 
ight )pmsqrt{left(-9 
ight )^2-4cdot6cdot3}}{2cdot6}=frac{9pmsqrt{9}}{12}=frac{3pm1}{4}

Isto implica nas seguintes soluções:

senx=frac{1}{2} ou senx=1.

Para senx=frac{1}{2}:

x=frac{pi}{6}+2kpi,,ou,, x=frac{5pi}{6}+2kpi

Para senx=1:

x=frac{pi}{2}+2kpi.

A solução é o conjunto união de todas essas soluções, logo, a resposta é a Letra A.



Questão 2039

(Ufjf 2003) Com os versos "Cantando espalharei por toda a parte, / Se a tanto me ajudar o engenho e a arte.", Camões explica que o propósito de "Os Lusíadas" é divulgar os feitos portugueses. Sobre esse poema épico, só é INCORRETO afirmar que:

Ver questão

Questão 4333

(Ufjf 2007) A figura a seguir mostra um sistema de duas partículas puntiformes A e B em repouso, com cargas elétricas iguais a Q, separadas por uma distância r. Sendo K, a constante eletrostática, pode-se afirmar que o módulo da variação da energia potencial da partícula B na presença da partícula A, quando sua distância é modificada para 2r, é:

 

Ver questão

Questão 7477

(Ufjf 2007) A figura a seguir representa a planificação de um poliedro convexo.

O número de vértices deste poliedro é:

Ver questão

Questão 8215

(Ufjf 2012) Uma peça de ornamentação confeccionada com vidro possui a forma de um prisma regular reto, cuja base é um triângulo equilátero. Em seu interior, há uma esfera representando o globo terrestre, que tangencia cada face do prisma. Sabendo que o raio da esfera é r, qual é o volume do prisma?

Ver questão