(ITA - 2023 - 1ª FASE)
Um corpo de massa m é lançado em um plano horizontal sem atrito, sob ação da gravidade g, e, ao entrar em um tubo, executa uma trajetória circular de raio R. A força exercida no corpo pelo tubo logo após o início do movimento circular tem intensidade F. Após meia volta, o corpo percorre uma trajetória retílinea em movimento uniforme até certa distância e depois sobe até certa altura h. O corpo sai do tubo em movimento vertical e imediatamente passa a se mover dentro de um fluido viscoso até atingir altura máxima H, conforme mostra a figura.
Considere que o corpo se desloca pelo tubo sem atrito; que o diâmetro do tubo é desprezível em relação a R, h e H; e que o módulo do trabalho realizado pela força de atrito viscoso até a massa atingir H é equivalente a um terço da energia cinética da partícula, quando esta adentra o fluido. Assinale a alternativa que expressa H em função das variáveis fornecidas.
Gabarito:
Inicialmente, quando a bola está prestes a entrar no tubo, temos:
Agora, trabalharemos com o movimento que é realizado até o final da altura , faremos conservação de energia:
Agora para o movimento que é realizado até o final da altura , com a conservação de energia:
Igualando as equações encontrada de :
.
(ITA - 2014 - 1ª FASE) Das afirmações:
I. Se x, y ∈ , com y ≠ – x, então x + y ∈ ;
II. Se x ∈ e y ∈ , então xy ∈ ;
III. Sejam a, b, c ∈ , com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,
é (são) verdadeira(s):
Ver questão
Considere as funções f, g : → , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:
I. Se A = B, então a = b e m = n;
II. Se A = , então a = 1;
III. Se a, b, m, n ∈ , com a = b e m = – n, então A = B,
é (são) verdadeira(s)
Ver questão