(ITA-2014)Uma amostra I de átomos de 57Fe, cujos núcleos excitados emitem fótons devido a uma transição nuclear, está situada a uma altura d verticalmente acima de uma amostra II de 57Fe que recebe a radiação emitida pela amostra I. Ao chegar a II, os fótons da amostra I sofrem um aumento de frequência devido à redução de sua energia potencial gravitacional, sendo, portanto, inca - pazes de excitar os núcleos de 57Fe dessa amostra. No entanto, essa incapacidade pode ser anulada se a amostra I se afastar verticalmente da amostra II com uma velocidade v adequada. Considerando v c e que a energia potencial gravitacional do fóton de energia ε pode ser obtida mediante sua “massa efetiva” ε/c2, assinale a opção que explicita v. Se necessário, utilize (1 + x)n ≅ 1 + nx para x 1.
Gabarito:
Resolução:
A energia adicional, no sistema, recebida pelos fótons que atingem a amostra, deve compensar a perda de energia potencial gravitacional para que ocorra a emissão na amostra (II).
Assim:
(ITA - 2014 - 1ª FASE) Das afirmações:
I. Se x, y ∈ , com y ≠ – x, então x + y ∈ ;
II. Se x ∈ e y ∈ , então xy ∈ ;
III. Sejam a, b, c ∈ , com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,
é (são) verdadeira(s):
Ver questão
Considere as funções f, g : → , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:
I. Se A = B, então a = b e m = n;
II. Se A = , então a = 1;
III. Se a, b, m, n ∈ , com a = b e m = – n, então A = B,
é (são) verdadeira(s)
Ver questão