(IME - 2021/2022 - 2ª fase)
Seja um tetraedro regular ABCD de aresta a e o ponto Q médio de AB. O ponto P sobre a aresta AB, entre Q e A é projetado nas arestas AC e AD, sobre os pontos M e M', respectivamente, e também nas arestas BC e BD, sobre os pontos N e N', respectivamente. O plano M M' N N' divide o tretaedro em dois volumes com razão de 1 para 4. Determine QP em função de a.
Gabarito:
Resolução:
1) No , temos que :
Analogamente para o triângulo :
2) No triângulo , e , assim temos que
No triângulo , e , assim temos que
No , temos:
No ,
O maior volume do maior dos sólidos selecionados por é:
Como é altura de :
Então, o volume é:
Mas o volume é
Portanto:
(IME 2007)
O gráfico acima apresenta a velocidade de um objeto em função do tempo. A aceleração média do objeto no intervalo de tempo de 0 a 4t é:
Ver questão(IME 2007) Um cubo de material homogêneo, de lado L = 0,4 m e massa M = 40 kg, está preso à extremidade superior de uma mola, cuja outra extremidade está fixada no fundo de um recipiente vazio. O peso do cubo provoca na mola uma deformação de 20 cm. Coloca-se água no recipiente até que o cubo fique com a metade de seu volume submerso. Se a massa específica da água é , a deformação da mola passa a ser:
Ver questão(IME 2007) Uma nave em órbita circular em torno da Terra usa seus motores para assumir uma nova órbita circular a uma distância menor da superfície do planeta. Considerando desprezível a variação da massa do foguete, na nova órbita:
Ver questão(IME 2007) Um gás ideal sofre uma expansão isotérmica, seguida de uma compressão adiabática. A variação total da energia interna do gás poderá ser nula se, dentre as opções abaixo, a transformação seguinte for uma:
Ver questão