Questão 57774

(ITA - 2021 - 1ª FASE)

Since from August 1914 to November 1918 Great Britain and her Allies were fighting for civilization it cannot, I suppose, be impertinent to inquire what precisely civilization may be "Liberty" and "Justice" have always been reckoned expensive words, but that "Civilization" could cost as much as I forget how many millions a day came as a surprise to many thoughtful taxpayers. The story of this word's rise to the highest place amongst British war aims is so curious that, even were it less relevant. I should be tempted to tell it [...].

"You are fighting for civilization", cried the wisest and best of those leaders who led us into war, and the very soldiers took up the cry, "Join up, for civilization's sake". Startled by this sudden enthusiasm for an abstraction in which till then politicians and recruiting-sargents had manifested little or no interest, I, in my turn, began to cry: "And what is civilization?" I did not cry aloud, be sure? at that time, for crying things of that sort aloud, one was sent to prison. But this thing is no longer criminal, nor unpatriotic even, to ask questions, I intend to inquire what this thing is for which we fought and for which we pay, I propose to investigate the nature of our leading war-aim. Whether my search will end in discovery and - if it does - wheter what is discovered will bear any likeliness to the Treaty of Versailles remains to be seen.

BELL, Clive. Civilization: An Essay, 1ª ed. 1928. Harmondsworth, Middlesex, UK: Penguin Books, 1928, p. 13.

 

O termo startled, destacado no trecho do segundo parágrafo, 'Startled by this sudden enthusiasm [...]", pode ser entendido como:

A

destroçado.

B

empolgado.

C

atônito.

D

instigado.

E

desanimado.

Gabarito:

atônito.



Resolução:

A palavra "startled" pode ser entendida como "perplexo", "surpreso" ou "assustador". Sendo assim, marca-se a alternativa C (atônito).



Questão 1

(ITA - 2014 - 1ª FASE) Das  afirmações: 

I. Se x, y  , com y ≠ – x, então x + y ;

II. Se x ∈  e y ∈   , então xy   ;

III. Sejam a, b, c, com a < b < c. Se f : [a, c] → [a, b] é sobrejetora, então f não é injetora,

é (são) verdadeira(s):

Ver questão

Questão 2

Considere as funções f, g : , f(x) = ax + m, g(x) = bx + n, em que a, b, m e n, são constantes reais. Se A e B são as imagens de f e de g, respectivamente, então, das afirmações abaixo:

I. Se A = B, então a = b e m = n;

II. Se A = , então a = 1;

III. Se a, b, m, n, com a = b e m = – n, então A = B,

é (são) verdadeira(s)

Ver questão

Questão 3

A soma   é igual a

Ver questão

Questão 4

Se z ∈ , é igual a

 

Ver questão