(Fuvest 2017 - 2ª fase - 3º dia) Um grupo de estudantes, pretendendo estudar fenômeno análogo ao das cores comumente observadas em manchas de óleo, fez o seguinte experimento: depositou uma gota de um líquido, com índice de refração n = 2,5 sobre a água contida em um recipiente cilíndrico de raio 10 cm. O líquido se espalha com espessura homogênea sobre toda a superfície da água, como esquematizado na figura.
a) Se o volume da gota do líquido for 0,0045 cm³ qual será a espessura E da camada do líquido sobre a água?
b) Um feixe de luz propaga-se no ar, incide perpendicularmente na superfície do líquido e sofre reflexão nas superfícies do líquido e da água. Quando a espessura E da camada do líquido for igual a sendo λ o comprimento de onda da luz incidente, ocorre interferência destrutiva entre a luz refletida no líquido e a luz refletida na água. Determine o valor de λ para essa condição.
c) Determine o volume da gota do líquido que deveria ser depositada sobre a água para que não se observe luz refletida quando luz verde de um laser, com frequência 0,6×1015 Hz incidir perpendicularmente na superfície do líquido.
Note e adote:
O líquido não se mistura com a água.
O recipiente é um cilindro circular reto.
Velocidade da luz c = 3×108 m/s.
π≈3.
Gabarito:
Resolução:
a) Como sabemos que o volume de um cilindro vale:
sendo E a espessura
b) Como sabemos que o enunciado nos forneceu que
c) Vamos descobrir o comprimento de onda do verde, sabendo a frequência pode ser escrita pela seguinte equação:
Fazendo o processo contrário feito nas outras alternativas, vamos calcular agora a espessura para isso acontecer:
Agora vamos calcular o volume do cilindro com essa nova espessura:
(FUVEST - 2016 - 1ª FASE)
No contexto do cartum, a presença de numerosos animais de estimação permite que o juízo emitido pela personagem seja considerado
Ver questão
(FUVEST - 2016 - 1ª FASE)
Para obter o efeito de humor presente no cartum, o autor se vale, entre outros, do seguinte recurso:
Ver questão
(Fuvest 2016)
Omolu espalhara a bexiga na cidade. Era uma vingança contra a cidade dos ricos. Mas os ricos tinham a vacina, que sabia Omolu de vacinas? Era um pobre deus das florestas d’África. Um deus dos negros pobres. Que podia saber de vacinas? Então a bexiga desceu e assolou o povo de Omolu. Tudo que Omolu pôde fazer foi transformar a bexiga de negra em alastrim, bexiga branca e tola. Assim mesmo morrera negro, morrera pobre. Mas Omolu dizia que não fora o alastrim que matara. Fora o 1lazareto. Omolu só queria com o alastrim marcar seus filhinhos negros. O lazareto é que os matava. Mas as macumbas pediam que ele levasse a bexiga da cidade, levasse para os ricos latifundiários do sertão. Eles tinham dinheiro, léguas e léguas de terra, mas não sabiam tampouco da vacina. O Omolu diz que vai pro sertão. E os negros, os ogãs, as filhas e pais de santo cantam:
Ele é mesmo nosso pai
e é quem pode nos ajudar...
Omolu promete ir. Mas para que seus filhos negros não o esqueçam avisa no seu cântico de despedida:
Ora, adeus, ó meus filhinhos,
Qu’eu vou e torno a vortá...
E numa noite que os atabaques batiam nas macumbas, numa noite de mistério da Bahia, Omolu pulou na máquina da Leste Brasileira e foi para o sertão de Juazeiro. A bexiga foi com ele.
Jorge Amado, Capitães da Areia.
1lazareto: estabelecimento para isolamento sanitário de pessoas atingidas por determinadas doenças.
Costuma-se reconhecer que Capitães da Areia pertence ao assim chamado “romance de 1930”, que registra importantes transformações pelas quais passava o Modernismo no Brasil, à medida que esse movimento se expandia e diversificava. No excerto, considerado no contexto do livro de que faz parte, constitui marca desse pertencimento
Ver questão
(Fuvest 2012)
Como não expressa visão populista nem elitista, o livro não idealiza os pobres e rústicos, isto é, não oculta o dano causado pela privação, nem os representa como seres desprovidos de vida interior; ao contrário, o livro trata de realçar, na mente dos desvalidos, o enlace estreito e dramático de limitação intelectual e esforço reflexivo.
Essas afirmações aplicam-se ao modo como, na obra:
Ver questão